Olimpiade Nasional Matematika dan Ilmu Pengetahuan Alam perguruan tinggi 2017 (Onmipa-pt)

BIDANG MATEMATIKA
23 MARET 2017
WAKTU: 60 MENIT

Struktur Aljabar

Petunjuk pengerjaan:

- 1. Tes ini terdiri dari dua bagian. Bagian Pertama terdiri dari 4 soal, sedangkan Bagian Kedua terdiri dari 2 soal.
- 2. Untuk soal-soal Bagian Pertama, tuliskan <u>hanya</u> jawaban akhir saja pada kotak yang disediakan. Jawaban yang dikehendaki adalah jawaban benar yang terbaik.
- 3. Untuk soal-soal Bagian Kedua, tuliskan jawaban Anda lengkap dengan argumentasi dan penjelasan.
- 4. Setiap soal pada Bagian Pertama bernilai 2 angka, sedangkan setiap soal pada Bagian Kedua bernilai 8 angka.
- 5. Waktu tes adalah waktu total untuk kedua bagian. Selama waktu itu, Anda boleh menyelesaikan soal yang mana pun sesuka Anda.
- 6. Gunakan pena atau pulpen. Pensil hanya boleh digunakan untuk gambar atau sketsa.
- 7. Jika tempat yang tersedia tidak mencukupi, gunakan halaman di belakangnya.
- 8. Bekerjalah dengan cepat, tetapi cermat dan teliti. Anda sama sekali <u>tidak</u> diperkenankan menggunakan penghapus cair.
- 9. Di akhir tes, kumpulkan berkas soal ini secara utuh.

Definisi dan Notasi

- Orde dari suatu unsur g di grup G adalah bilangan asli terkecil n sehingga $g^n=e$ dengan e unsur identitas di G.
- Orde dari grup adalah banyaknya unsur di grup.
- Polinom f(x) di F[x] dengan F lapangan disebut tereduksi jika terdapat g(x), h(x) berderajat positif sehingga f(x) = g(x)h(x).
- Suatu unit a adalah unsur di ring R sedemikian sehingga terdapat $b \in R$ sehingga ab = 1 = ba.
- Misalkan $f:R\to S$ merupakan homomorfisma ring. Kernel dari f adalah himpunan Ker $f:=\{r\in R: f(r)=0\}.$
- $\bullet\,$ Ideal I diR disebut maksimaljika tidak terdapat ideal lain Jsehingga $I\subsetneqq J\subsetneqq R.$

Nama:	V./P1:
BAGIAN PERTAMA	
1. Banyaknya unit di ring \mathbb{Z}_{2^n} adalah	
2. Misalkan S_5 adalah grup permutasi atas $\{1,2,3,4,5\}$. Banyaknya unsur berorde 2 di S_5 adalah	
3. Banyaknya subgrup dari $\mathbb{Z}_2 \times \mathbb{Z}_4$ berorde 4 adalah	
4. Misalkan \mathbb{F}_2 adalah lapangan (field) dengan dua unsur. Semua polinom tereduksi berderajat 5 di $\mathbb{F}_2[x]$ yang tidak memiliki akar	

adalah ...

Nama: Univ./PT:

BAGIAN KEDUA

- 1. Misalkan H suatu subgrup normal hingga dari G. Misalkan pula $g \in G$ berorde n dan unsur di H yang komutatif dengan g hanyalah unsur identitas e.
 - (a) Buktikan bahwa pemetaan $f: H \to H$ dengan $f(h) = g^{-1}h^{-1}gh$ merupakan suatu bijeksi.
 - (b) Tunjukkan bahwa semua unsur di koset gH semuanya berorde n.

Nama:	Univ./PT:
-------	-----------

2. Buktikan bahwa I merupakan ideal maksimal di gelanggang R jika dan hanya jika terdapat suatu lapangan (field) F dan homomorfisma ring $f:R\to F$ yang surjektif sedemikian sehingga $I=\mathrm{Ker} f$.